报告题目:Rogue wave and a pair of resonance stripe solitons to KP equation
报告人:陈勇 教授
主持人:吕卓生、刘文军
时间:2017年5月23日上午10:30—11:30
地点:校本部主楼1214室
报告摘要:
A reduced generalized (3+1)-dimensional KP equation is investigated and rogue wave and a pair of resonance stripe solitons are discovered. First, based on the bilinear method, some lump solutions are obtained containing six parameters, four of which must cater to the non-zero conditions so as to insure the solution analytic and rationally localized. Second, a one-stripe-soliton-lump solution is presented and the interaction shows that the lump soliton can be drowned or swallowed by the stripe soliton, conversely, the lump soliton is spit out from the stripe soliton. Finally, a new ansatz of combination of positive quadratic functions and hyperbolic functions is introduced, and thus a novel nonlinear phenomenon is explored. It is interesting that a rogue wave can be excited. It is observed that the rogue wave, possessing a peak wave profile, arises from one of the resonance stripe solitons, moves to the other, and then disappears. Therefore, a rogue wave can be generated by the interaction between the lump soliton and the pair of resonance stripe solitons. However, compared with classic rouge wave, the dynamics of above nonlinear waves are quite different, which are graphically demonstrated.
报告人简介:
陈勇,男,华东师范大学,教授,博士生导师,上海市闵行区拔尖人才。研究方向:非线性物理、可积系统、混沌理论、符号计算、大气和海洋动力学和数值计算,提出了一系列可机械化实现非线性方程求解的方法;发展了李群理论并成功应用于大气海洋物理模型的研究;在不变群优化理论、非局域对称理论和怪波理论及其应用方面取得新的进展,提出了一系列混沌系统函数同步方法,研究了希尔伯特第十六问题的一个子问题(Lins-Melo-Pugh猜想)并取得一定进展。 目前已在国际学术期刊上发表SCI论文200余篇,他引3000余次。主持和参与国家自然科学基金重点项目、面上项目、973全球变化研究国家重大科学研究计划项目、国家自然科学基金创新群体等项目。