讲座题目:Well-posedness of Camassa-Holm equation in the endpoint space $H^{3/2}$
主讲人:霍朝辉 副研究员(中科院数学与系统科学研究院)
主持人:陈秀卿教授
时 间:2015年3月20日(周五)上午10:00-11:00
地 点:主楼1214
主要内容:
We mianly consider the well-posedness of the Cauchy problem for Camassa-Holm equation. The local well-posedness for Camassa-Holm equation was obtained applying Kato's semigroup approach [G.R.Blanco,2001] in $H^{s}$ with $s>3/2$. Moteover, by using the transport equation theory and the Besov spaces,Danchin [R.Danchin,2003] proved that the Cauchy problem for the Camassa-Holm equation is locally well-posed in $B^{3/2}_{2,1}$. Counterexamples to well-posedness in thecase $s<3/2 $ have been exhibited by Himonas and Misiolek [A. Himonas, G. Misiolek,2001] actually what they do prove there is that uniform continuity with respect to the data cannot hold in $H^s$ with $s<3/2 $). Therefore, in the Sobolev spaces framework, $s=3/2$ seems to be thecritical value for local well-posedness. We can show that if $u_0 \in H^{3/2}(\R)$ and $u_0-u_{0xx} $ does not change signand belongs to $L^1$; then theCauchy problem of Camassa-Holm equation is locally well-posed in endpoint space $H^{3/2}$. The flow map$u_0\rightarrow u(t)$ is also continuous.
主讲人简介:
2007/03 – 至今,中科院,数学与系统科学研究院数学所,副研究员
2007/02 – 2009/02,香港城市大学,数学系,Research Fellow
2006/06 – 2007/03,中科院, 数学与系统科学研究院数学所,助理研究员
2004/06 – 2006/06,北京航空航天大学,数学系,博士后
2001/09 – 2004/06, 中国工程物理研究院北京研究生部
(主页http://sourcedb.amss.cas.cn/zw/zjrck/fyjy/200910/t20091016_2552552.html)